EPISTAR

ES-VEBCA12C

InGaN A-series Blue LED Chip

> Mechanical Specification:

(1) Dimension

- Chip size: 305 \pm 25 μm x 305 \pm 25 μm

- Thickness: 110 \pm 10 μm - P bonding pad: 90 \pm 10 μm - N bonding pad: 90 \pm 10 μm

(2) Metallization

Topside P electrode: Au alloyTopside N electrode: Au alloy

Features:

- · High radiant flux
- · Long operation life
- · Lambertian radiation

Applications:

Automotive

> Electro-optical Characteristics at 25°C: (1)

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Farmer d Vallage	Vf1		If = 10μA	2.0	-	-	V
Forward Voltage	Vf2		If = 20mA	-	2.9	3.2	V
Reverse Current	Ir		Vr = 5V	-	-	1.0	μΑ
Dominant Wavelength ⁽²⁾	λd		If = 20mA	450	-	470	nm
Spectra Half-width	Δλ		If = 20mA	-	25	-	nm
Radiant Flux ⁽³⁾⁽⁴⁾	Ро	A29	If = 20mA	28	-	29	mW
		A30		29	-	30	
		A31		30	-	32	
		A32		32	-	34	
		A33		34	-	36	

Note:

(1) ESD protection during chip handling is recommended.

(2) Basically, the wavelength span is 20nm; however, customers' special requirements are also welcome.

(3) Radiant flux is determined by using an Ag-plated TO-can header without an encapsulant

(4) Radiant flux measurement allows a tolerance of $\pm 15\%$.

> Absolute Maximum Ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC Current	If	Ta = 25℃	≤ 50	mA
Reverse Voltage	Vr	Ta = 25℃	≤ 5	V
Junction Temperature	Tj	-	≤ 125	۲
ESD withstand voltage(HBM) ⁽²⁾	VESD	-	Up to 2	KV
Storage Temperature	Tstg	Chip	-40 ~ +85	Ĉ
		Chip-on-tape/storage	5 ~ 35	Ĉ
		Chip-on-tape/transportation	-20 ~ +65	Ĉ
Temperature during Packaging	-	-	280(<10sec)	٢

Note: (1) Maximum ratings are package dependent. The above maximum ratings were determined using a Printed Circuit Board (PCB) without an encapsulant. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.

> Characteristic Curves:

Fig.1 – Relative luminous Intensity vs. Forward Current

Fig.3 – Relative Intensity (@20mA) vs. Ambient Temperature

Fig.5 – Dominant Wavelength (@20mA) vs. Ambient Temperature

Fig.2 – Forward Current vs. Forward Voltage

Fig.4 – Forward Voltage (@20mA) vs. Ambient Temperature

Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (De-rating based on Tj max. = 125°C)

⁽²⁾ According to ANSI/ESDA/JEDEC JS-001

> Qualification:

- ¹⁾ EPISTAR's LED chips and epi-wafers are designed and manufactured according to the quality management system that complies to the IATF 16949:2016 requirements (IATF No: 0325277/ Certificate Registration No: 20000910 IATF16).
- ²⁾ The chip qualification test plan is based on the guidelines of AEC-Q101-REV-D, Failure Mechanism Based Stress Test Qualification for Discrete Semiconductors in Automotive Applications.

> Revision:

Version	Yersion Page		Date of Modification	
А	3	Initial Release	December, 2019	